Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enDana Kube; Sebastian Gombert; Brigitte Suter; Joshua Weidlich; Karel Kreijns; Hendrik Drachsler
TitelHacking Gender in Computer-Supported Collaborative Learning: The Experience of Being in Mixed-Gender Teams at a Computer Science Hackathon
QuelleIn: Journal of Computer Assisted Learning, 40 (2024) 6, S. 2513-2527Infoseite zur Zeitschrift
PDF als Volltext Verfügbarkeit 
ZusatzinformationORCID (Dana Kube)
ORCID (Sebastian Gombert)
ORCID (Brigitte Suter)
ORCID (Joshua Weidlich)
ORCID (Karel Kreijns)
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN0266-4909
DOI10.1111/jcal.12905
SchlagwörterForschungsbericht; Cooperative Learning; Computer Assisted Instruction; Gender Issues; Learning Activities; Computer Software; Vandalism; Privacy; Computer Security; Sex Stereotypes; Gender Bias; Student Experience; Individual Differences; Teamwork; Performance Factors; Secondary School Students; STEM Education; Computer Science; Student Attitudes; Computer Science Education; Educational Games
AbstractBackground: Gender stereotypes about women and men are prevalent in computer science (CS). The study's goal was to investigate the role of gender bias in computer-supported collaborative learning (CSCL) in a CS context by elaborating on gendered experiences in the perception of individual and team performance in mixed-gender teams in a hackathon. Dataset: The dataset of this study was collected at a 3-day CSCL hackathon aimed at gaining knowledge on designing educational games. We assigned the 28 participants of the hackathon to mixed-gender groups and asked them to fill out a questionnaire, including collective self-esteem scales, before the start. During the hackathon, we again asked the participants to complete team progress evaluation surveys individually after each workday. Lastly, we interviewed 11 participants to elaborate on the quantitative findings with qualitative data. Methodology: We applied an exploratory mixed-method approach using quantitative survey data at several time points during the hackathon, which was analysed with clustering and descriptive statistics and complemented with qualitative coding of interviews with participants. Results: The results demonstrate that social and psychological aspects of gender are important for understanding the outcomes and perceptions of gender in a CS hackathon. The analysis further suggests that collective self-esteem can be used as a key variable to assess gender differences in CSCL studies, providing explanatory benefits. More broadly, results gave reason to believe that CSCL in the CS domain currently severely fails to account for gender representation. Interviewed participants raised substantial concerns about the underlying gender stereotypes prevalent in communication, team roles, and work division. We provide recommendations for practitioners seeking to create gender-inclusive and counter-stereotypical CSCL and wider, critical proposals for how we, as researchers, can assess gender with appropriate methodologies and interventions in computer science education. (As Provided).
AnmerkungenWiley. Available from: John Wiley & Sons, Inc. 111 River Street, Hoboken, NJ 07030. Tel: 800-835-6770; e-mail: cs-journals@wiley.com; Web site: https://www.wiley.com/en-us
BegutachtungPeer reviewed
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2025/2/04
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Journal of Computer Assisted Learning" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: