Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enJoakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg
TitelAnalyzing Polytomous Test Data: A Comparison between an Information-Based IRT Model and the Generalized Partial Credit Model
QuelleIn: Journal of Educational and Behavioral Statistics, 49 (2024) 5, S. 753-779Infoseite zur Zeitschrift
PDF als Volltext Verfügbarkeit 
ZusatzinformationORCID (Joakim Wallmark)
ORCID (Juan Li)
ORCID (Marie Wiberg)
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN1076-9986
DOI10.3102/10769986231207879
SchlagwörterForschungsbericht; Item Response Theory; Test Items; Models; Scoring; Comparative Analysis; Simulation; Evaluation Methods; Goodness of Fit; Statistical Bias
AbstractItem response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of information theory, and the generalized partial credit (GPC) model, a widely used parametric alternative. We evaluate these models using both simulated and real test data. In the real data examples, the OS model demonstrates superior model fit compared to the GPC model across all analyzed datasets. In our simulation study, the OS model outperforms the GPC model in terms of bias, but at the cost of larger standard errors for the probabilities along the estimated item response functions. Furthermore, we illustrate how surprisal arc length, an IRT scale invariant measure of ability with metric properties, can be used to put scores from vastly different types of IRT models on a common scale. We also demonstrate how arc length can be a viable alternative to sum scores for scoring test takers. (As Provided).
AnmerkungenSAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://sagepub.com
BegutachtungPeer reviewed
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2025/2/04
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Journal of Educational and Behavioral Statistics" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: