Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enIvan D. Mardini G.; Christian G. Quintero M.; C?sar A. Viloria N.; Winston S. Percybrooks B.; Heydy S. Robles N.; Karen Villalba R.
TitelA Deep-Learning-Based Grading System (ASAG) for Reading Comprehension Assessment by Using Aphorisms as Open-Answer-Questions
QuelleIn: Education and Information Technologies, 29 (2024) 4, S. 4565-4590Infoseite zur Zeitschrift
PDF als Volltext Verfügbarkeit 
ZusatzinformationORCID (Ivan D. Mardini G.)
Als Datenquelle verlinkte Ressource
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN1360-2357
DOI10.1007/s10639-023-11890-7
SchlagwörterForschungsbericht; Reading Comprehension; Reading Tests; Learning Strategies; Grading; Test Format; Figurative Language; Questioning Techniques; Undergraduate Students; Second Language Learning; Spanish; Technology Uses in Education; Automation; Educational Technology
AbstractToday reading comprehension is considered an essential skill in modern life, therefore, higher education students require more specific skills to understand, interpret and evaluate texts effectively. Short answer questions (SAQs) are one of the relevant and proper tools for assessing reading comprehension skills. Unlike multiple-choice questions, SAQs allow for the assessment of cognitive abilities such as attention, language, perception, and problem solving. However, the task of SAQs scoring is time-consuming and susceptible to ambiguity. Automatic Short Answer Grading (ASAG) is a new paradigm that could help solve these problems. This experimental analysis aims to implement ASAG using several approaches to sentence embedding based on deep learning with a multilayer perceptron regression layer on the top, trained with a reading comprehension dataset based on aphorisms. For experimental testing, the available dataset is composed of answers given by 199 undergraduate students in Spanish. BERT and Skip-Thought models are tested with different hyperparameters to find the best performance in terms of Pearson correlation coefficient and RMSE against human experts grades. The result of the current study showed that BERT model performed better than other approaches. (As Provided).
AnmerkungenSpringer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link.springer.com/
BegutachtungPeer reviewed
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2025/2/06
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Education and Information Technologies" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: