Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enShafipoor, Mahdieh; Ravand, Hamdollah; Maftoon, Parviz
TitelTest-Level and Item-Level Model Fit Comparison of General vs. Specific Diagnostic Classification Models: A Case of True DCM
QuelleIn: Language Testing in Asia, 11 (2021), Artikel 33
PDF als Volltext Verfügbarkeit 
ZusatzinformationORCID (Ravand, Hamdollah)
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN2229-0443
DOI10.1186/s40468-021-00148-z
SchlagwörterForschungsbericht; Goodness of Fit; Models; Classification; Grammar; Vocabulary Development; Language Tests; Achievement Tests; English (Second Language); Second Language Learning; Diagnostic Tests; Test Items; Item Analysis
AbstractThe current study compared the model fit indices, skill mastery probabilities, and classification accuracy of six Diagnostic Classification Models (DCMs): a general model (G-DINA) against five specific models (LLM, RRUM, ACDM, DINA, and DINO). To do so, the response data to the grammar and vocabulary sections of a General English Achievement Test, designed specifically for cognitive diagnostic purposes from scratch, was analyzed. The results of the test-level-model fit values obtained strong evidence in supporting the G-DINA and LLM models possessing the best model fit. In addition, the ACDM and RRUM were almost very identical to that of the G-DINA. The value indices of the DINO and DINA models were very close to each other but larger than those of the G-DINA and LLM. The model fit was also investigated at the item level, and the results revealed that model selection should be performed at the item level rather than the test level, and most of the specific models might perform well for the test. The findings of this study suggested that the relationships among the attributes of grammar and vocabulary are not 'either-or' compensatory or non-compensatory but a combination of both. (As Provided).
AnmerkungenSpringer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://link.springer.com/
BegutachtungPeer reviewed
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2024/1/01
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Language Testing in Asia" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: