Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enKelchen, Robert J.; Ritter, Dubravka; Webber, Douglas A.
InstitutionNational Bureau of Economic Research
TitelPredicting College Closures and Financial Distress.
QuelleCambridge, Mass: National Bureau of Economic Research (2024)
PDF als Volltext  Link als defekt meldenVerfügbarkeit 
ReiheNBER working paper series. w33216
BeigabenIllustrationen
Spracheenglisch
Dokumenttyponline; Monografie; Graue Literatur
SchlagwörterLiquidation; Hochschule; Arbeitspapier; Insolvenz; Prognose; USA
AbstractIn this paper, we assemble the most comprehensive dataset to date on the characteristics of colleges and universities, including dates of operation, institutional setting, student body, staff, and finance data from 2002 to 2023. We provide an extensive description of what is known and unknown about closed colleges compared with institutions that did not close. Using this data, we first develop a series of predictive models of financial distress, utilizing factors like operational revenue/expense patterns, sources of revenue, metrics of liquidity and leverage, enrollment/staff patterns, and prior signs of significant financial strain. We benchmark these models against existing federal government screening mechanisms such as financial responsibility scores and heightened cash monitoring. We document a high degree of missing data among colleges that eventually close and show that this is a key impediment to identifying at risk institutions. We then show that modern machine learning techniques, combined with richer data, are far more effective at predicting college closures than linear probability models, and considerably more effective than existing accountability metrics. Our preferred model, which combines an off-the-shelf machine learning algorithm with the richest set of explanatory variables, can significantly improve predictive accuracy even for institutions with complete data, but is particularly helpful for predicting instances of financial distress for institutions with spotty data. Finally, we conduct simulations using our estimates to contemplate likely increases in future closures, showing that enrollment challenges resulting from an impending demographic cliff are likely to significantly increase annual college closures for reasonable scenarios.
Erfasst vonZBW - Leibniz-Informationszentrum Wirtschaft, Kiel
Update2025/2
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Da keine ISBN zur Verfügung steht, konnte leider kein (weiterer) URL generiert werden.
Bitte rufen Sie die Eingabemaske des Karlsruher Virtuellen Katalogs (KVK) auf
Dort haben Sie die Möglichkeit, in zahlreichen Bibliothekskatalogen selbst zu recherchieren.
Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: