Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enBauer, Christina A.; Hamada, Terianne Y.; Kim, Hyesoo; Johnson, Mathew R.; Voegtle, Matthew J.; Emrick, Matthew S.
TitelAn Integrated, Multipart Experiment: Synthesis, Characterization, and Application of CdS and CdSe Quantum Dots as Sensitizers in Solar Cells
QuelleIn: Journal of Chemical Education, 95 (2018) 7, S.1179-1186 (8 Seiten)Infoseite zur Zeitschrift
PDF als Volltext Verfügbarkeit 
ZusatzinformationORCID (Bauer, Christina A.)
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN0021-9584
DOI10.1021/acs.jchemed.7b00593
SchlagwörterScience Instruction; College Science; Undergraduate Study; Chemistry; Scientific Concepts; Thermodynamics; Kinetics; Science Laboratories; Spectroscopy; Mathematical Models; Energy; Light; Science Experiments; Laboratory Experiments
AbstractQuantum dots (QDs) are useful for demonstrating the particle-in-a-box (PIB) model utilized in quantum chemistry, and can readily be applied to a discussion of both thermodynamics and kinetics in an undergraduate laboratory setting. Modifications of existing synthetic procedures were used to create QDs of different sizes and compositions (CdS passivated with polymer, and CdSe passivated with oleic acid/ trioctylphosphine). These were investigated by spectroscopy, to which standard 3D PIB mathematical models were applied to determine their effective size. The data were compared to those from other methods for students to see the validity of the PIB model. For CdSe QDs, an empirical formula was applied to the spectroscopic data. In the case of CdS, the synthesized QDs were studied with X-ray diffraction, from which one can also estimate the size of the QDs. Finally, the QDs were utilized as the light-harvesting layer in photovoltaic cells by attachment to a layer of surface-modified titania (TiO[subscript 2]) nanoparticles on conductive glass, and the surface chemistry tested via water contact-angle measurements. The photoresponse of these cells was measured using basic electrochemistry equipment for a selection of QDs, and these results were considered in relation to the light source used for excitation (CdS QDs absorb UV light, and a voltage was only measurable upon exposure to UV light). Students are able to synthesize, characterize, and apply their materials to a functional purpose. Ultimately, students drafted reports in the form of an ACS-style communication, allowing for a tie-in of typical lab reports to real-world journal publications. (As Provided).
AnmerkungenDivision of Chemical Education, Inc and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2020/1/01
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Journal of Chemical Education" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: