Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enRoundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.
TitelExperts' Understanding of Partial Derivatives Using the Partial Derivative Machine
QuelleIn: Physical Review Special Topics - Physics Education Research, 11 (2015) 2, S.020126-1 (21 Seiten)
PDF als Volltext Verfügbarkeit 
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN1554-9178
DOI10.1103/PhysRevSTPER.11.020126
SchlagwörterPhysics; Mathematics; Engineering; Expertise; Comprehension; Differences; Professional Personnel; Technical Occupations; Scientists; Interviews
AbstractPartial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation. [This paper is part of the Focused Collection on Upper Division Physics Courses.] (As Provided).
AnmerkungenAmerican Physical Society. One Physics Ellipse 4th Floor, College Park, MD 20740-3844. Tel: 301-209-3200; Fax: 301-209-0865; e-mail: assocpub@aps.org; Web site: http://prst-per.aps.org
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2020/1/01
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Physical Review Special Topics - Physics Education Research" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: