Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enCrossley, Scott; Wan, Qian; Allen, Laura; McNamara, Danielle
TitelSource Inclusion in Synthesis Writing: An NLP Approach to Understanding Argumentation, Sourcing, and Essay Quality
Quelle(2021), (31 Seiten)
PDF als Volltext (1); PDF als Volltext kostenfreie Datei (2) Verfügbarkeit 
ZusatzinformationORCID (Crossley, Scott)
Weitere Informationen
Spracheenglisch
Dokumenttypgedruckt; online; Monographie
SchlagwörterWriting Skills; Cognitive Processes; Essays; Cues; Writing Evaluation; Natural Language Processing; Persuasive Discourse; Semantics; Information Retrieval; Citations (References); Plagiarism; Predictor Variables; Computer Software; Computational Linguistics; Evaluators; Scores
AbstractSynthesis writing is widely taught across domains and serves as an important means of assessing writing ability, text comprehension, and content learning. Synthesis writing differs from other types of writing in terms of both cognitive and task demands because it requires writers to integrate information across source materials. However, little is known about how integration of source material may influence overall writing quality for synthesis tasks. This study examined approximately 900 source-based essays written in response to four different synthesis prompts which instructed writers to use information from the sources to illustrate and support their arguments and clearly indicate from which sources they were drawing (i.e., citation use). The essays were then scored by expert raters for holistic quality, argumentation, and source use/inferencing. Hand-crafted natural language processing (NLP) features and pre-existing NLP tools were used to examine semantic and keyword overlap between the essays and the source texts, plagiarism from the source texts, and instances of source citation and quoting. These variables along with text length and prompt were then used to predict essays scores. Results reported strong models for predicting human ratings that explained between 47 and 52% of the variance in scores. The results indicate that text length was the strongest predictor of score but also that more successful writers include stronger, semantically-related information from the source, provide more citations and do so later in the text, and copy less from the text. This work introduces the use of NLP techniques to assess source integration, provides details on the types of source integration used by writers, and highlights the effects of source integration on writing quality. [This is the online version of an article published in "Reading and Writing."] (As Provided).
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2024/1/01
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Da keine ISBN zur Verfügung steht, konnte leider kein (weiterer) URL generiert werden.
Bitte rufen Sie die Eingabemaske des Karlsruher Virtuellen Katalogs (KVK) auf
Dort haben Sie die Möglichkeit, in zahlreichen Bibliothekskatalogen selbst zu recherchieren.
Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: