Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enVenables, Anne; Tan, Grace
TitelA "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
QuelleIn: Journal of Information Technology Education, 6 (2007), S.249-261 (13 Seiten)
PDF als Volltext Verfügbarkeit 
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN1547-9714
SchlagwörterLeitfaden; Unterricht; Lehrer; Feedback (Response); Constructivism (Learning); Genetics; Knowledge Representation; Mathematical Applications; Problem Solving; Undergraduate Students; Experiential Learning; Logical Thinking; Learning Activities; Teaching Methods; Information Science Education
AbstractGenetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary literature, such as population, chromosome, crossover, cloning, mutation, genes and generations. For beginners studying genetic algorithms, there is quite an overhead in gaining comfort with these terms and an understanding of their parallel meanings in the unfamiliar computing milieu of an evolutionary algorithm. This paper describes a "hands on" strategy to introduce and teach genetic algorithms to undergraduate computing students. By borrowing an analogical model from senior biology classes, poppet beads are used to represent individuals in a population (Harrison, 2001). Described are several introductory exercises that transport students from an illustration of natural selection in "Biston betula" moths, onto the representation and solution of differing mathematical and computing problems. Through student manipulation and interactions with poppet beads, the exercises cover terms such as population, generation, chromosome, gene, mutation and crossover in both their biological and computing contexts. Importantly, the tasks underline the two key design issues of genetic algorithms: the choice of an appropriate chromosome representation, and a suitable fitness function for each specific instance. Finally, students are introduced to the notion of schema upon which genetic algorithms operate. The constructivist model of learning advocates the use of such contextual problems to create an environment where students become active participants in their own learning (Ben-Ari, 1998; Greening, 2000; Kolb, 1984). Initial student feedback about these "hands on" exercises has been enthusiastic. As well, several students have made reference to the lessons learnt as the basis for GA coding in subsequent open-ended assignments. It seems that once the hurdle of becoming familiar with GA terminology has been surmounted, students find genetic algorithms to be particularly intriguing for their uncanny ability to solve incredibly complex problems quickly and proficiently (Moore, 2001). (Contains 11 figures.) (As Provided).
AnmerkungenInforming Science Institute. 131 Brookhill Court, Santa Rosa, CA 95409. Tel: 707-537-2211; Fax: 480-247-5724; Web site: http://JITE.org
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2017/4/10
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Journal of Information Technology Education" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: