Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Startseite

Literaturnachweis - Detailanzeige

 
AutorenBaneres, David; Rodriguez-Gonzalez, M. Elena; Serra, Montse
TitelAn Early Feedback Prediction System for Learners At-Risk within a First-Year Higher Education Course
QuelleIn: IEEE Transactions on Learning Technologies, 12 (2019) 2, S.249-263 (15 Seiten)
PDF als Volltext    Verfügbarkeit 
ZusatzinformationORCID (Baneres, David)
ORCID (Rodriguez-Gonzalez, M. Elena)
ORCID (Serra, Montse)
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN1939-1382
DOI10.1109/TLT.2019.2912167
SchlagwörterPrediction; Feedback (Response); At Risk Students; College Freshmen; Identification; Integrated Learning Systems; Electronic Learning; Grades (Scholastic); Early Intervention; Computer Science; Accuracy; Individualized Instruction; Data Use; Virtual Universities; Foreign Countries; Open Universities; Program Effectiveness; Computer Interfaces; Progress Monitoring; Spain (Barcelona)
AbstractIdentifying at-risk students as soon as possible is a challenge in educational institutions. Decreasing the time lag between identification and real at-risk state may significantly reduce the risk of failure or disengage. In small courses, their identification is relatively easy, but it is impractical on larger ones. Current Learning Management Systems store a large amount of data that could help to generate predictive models to early identification of students in online and blended learning. The contribution of this paper is twofold: First, a new adaptive predictive model is presented based only on students' grades specifically trained for each course. A deep analysis is performed in the whole institution to evaluate its performance accuracy. Second, an early warning system is developed, focusing on dashboards visualization for stakeholders (i.e., students and teachers) and an early feedback prediction system to intervene in the case of at-risk identification. The early warning system has been evaluated in a case study on a first-year undergraduate course in computer science. We show the accuracy of the correct identification of at-risk students, the students' appraisal, and the most common factors that lead to at-risk level. (As Provided).
AnmerkungenInstitute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, Piscataway, NJ 08854. Tel: 732-981-0060; Web site: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4620076
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2019/3/09
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "IEEE Transactions on Learning Technologies" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)