Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enEggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne
TitelSupporting Students' Learning and Socioscientific Reasoning about Climate Change--The Effect of Computer-Based Concept Mapping Scaffolds
QuelleIn: Research in Science Education, 47 (2017) 1, S.137-159 (23 Seiten)Infoseite zur Zeitschrift
PDF als Volltext Verfügbarkeit 
Spracheenglisch
Dokumenttypgedruckt; online; Zeitschriftenaufsatz
ISSN0157-244X
DOI10.1007/s11165-015-9493-7
SchlagwörterClimate; Change; Environmental Education; Sustainable Development; Critical Thinking; Science Education; Scientific Research; Scientific Literacy; Scientific Concepts; Decision Making; Attitude Change; Computer Assisted Instruction; Science Tests; Concept Formation; Concept Mapping; Scaffolding (Teaching Technique); Interdisciplinary Approach; Teaching Methods
AbstractClimate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially non-scientists, to grasp. Science education is a field which can play a crucial role in fostering meaningful education of students to become climate literate citizens (e.g., NOAA 2009; Schreiner et al., 41, 3-50, 2005). If students are, at some point, to participate in societal discussions about the sustainable development of our planet, their learning with respect to such issues needs to be supported. This includes the ability to think critically, to cope with complex scientific evidence, which is often subject to ongoing inquiry, and to reach informed decisions on the basis of factual information as well as values-based considerations. The study presented in this paper focused on efforts to advance students in (1) their conceptual understanding about climate change and (2) their socioscientific reasoning and decision making regarding socioscientific issues in general. Although there is evidence that "knowledge" does not guarantee pro-environmental behavior (e.g. Schreiner et al., 41, 3-50, 2005; Skamp et al., 97(2), 191-217, 2013), conceptual, interdisciplinary understanding of climate change is an important prerequisite to change individuals' attitudes towards climate change and thus to eventually foster climate literate citizens (e.g., Clark et al. 2013). In order to foster conceptual understanding and socioscientific reasoning, a computer-based learning environment with an embedded concept mapping tool was utilized to support senior high school students' learning about climate change and possible solution strategies. The evaluation of the effect of different concept mapping scaffolds focused on the quality of student-generated concept maps, as well as on students' test performance with respect to conceptual knowledge as well as socioscientific reasoning and socioscientific decision making. (As Provided).
AnmerkungenSpringer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: service-ny@springer.com; Web site: http://www.springerlink.com
Erfasst vonERIC (Education Resources Information Center), Washington, DC
Update2020/1/01
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Research in Science Education" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: