Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inn/enFeher, J.; Wenzl, M.; Zeitler, H.
TitelDie Dimension verschiedener Cantor-Staeube.
QuelleIn: Praxis der Mathematik, 38 (1996) 2, S. 82-84    Verfügbarkeit 
BeigabenLiteraturangaben; Abbildungen
Sprachedeutsch
Dokumenttypgedruckt; Zeitschriftenaufsatz
ISSN0032-7042
SchlagwörterFraktal; Mathematik; Mathematikunterricht
AbstractZerlegen des Einheitsintervalls in drei gleichlange Intervalle, Herauswischen des mittleren offenen Intervalls, Anwendung dieses Verfahrens auf die beiden uebriggebliebenen Intervalle und Wiederholung dieses Prozesses ad infinitum fuehrt auf die Cantormenge C(p) mit p=3, deren Selbstaehnlichkeitsdimension d(s,3) - ln2/ln3 ≈ 0,6309 betraegt. In einer ersten Verallgemeinerung wird statt p=3 der Faktor p=2n+1 (n natuerliche Zahl) gewaehlt: Die Einheitsstrecke wird in (2n+1) gleichlange Intervalle zerlegt. Dann wird jedes zweite offene dieser insgesamt n Intervalle herausgewischt. Mit jedem der anderen (n+1) abgeschlossenen Intervalle wird auf dieselbe Weise verfahren. Die so entstehende Cantormenge C(2n+1) besitzt die Selbstaehnlichkeitsdimension d(s,2n+1)=(ln(n+1))/(ln(2n+1)) und es gilt d(s,2n+1)→1(n→∞). In einer zweiten Verallgemeinerung wird wie bei C(3) aus dem Einheitsintervall das mittlere offene Intervall der Laenge 1/3 herausgewischt. Beim naechsten Wischvorgang wird aber p = 5 gewaehlt und aus jedem der beiden Restintervalle zwei offene Intervalle der Laenge 1/15 entnommen. Fuer die folgenden Wischungen wird dann p = 7,9,...2n + 1,... gewaehlt. Die so entstehende Cantormenge ist nicht selbstaehnlich. Es wird gezeigt, dass sie die fraktale Dimension d(F)=(ln(n + 1)!)/(ln(3*5...(2n + 1))) mit d(F)→1(n→∞) besitzt.
Erfasst vonFIZ Karlsruhe - Leibniz-Institut für Informationsinfrastruktur
Update1998_(CD)
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Bibliotheken, die die Zeitschrift "Praxis der Mathematik" besitzen:
Link zur Zeitschriftendatenbank (ZDB)

Artikellieferdienst der deutschen Bibliotheken (subito):
Übernahme der Daten in das subito-Bestellformular

Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)