Suche

Wo soll gesucht werden?
Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Literaturnachweis - Detailanzeige

 
Autor/inSeidel, Karen
TitelModelling binary classification with computability theory.
QuellePotsdam: Universität Potsdam (2022), viii, 120 S.
PDF als Volltext kostenfreie Datei (1); PDF als Volltext kostenfreie Datei (2); PDF als Volltext kostenfreie Datei (3)  Link als defekt meldenVerfügbarkeit 
Dissertation, Universität Potsdam, 2021.
Spracheenglisch
Dokumenttyponline; Monographie
DOI10.25932/publishup-52998
URNurn:nbn:de:kobv:517-opus4-529988
SchlagwörterLernen; Rekursion; Algorithmus; Dissertation; Klassifikation; Simulation
AbstractWir untersuchen Modelle für inkrementelle binäre Klassifikation, ein Beispiel für überwachtes online Lernen. Den Ausgangspunkt bildet ein Modell für menschliches und maschinelles Lernen von E.M.Gold. Im ersten Teil untersuchen wir inkrementelle Lernalgorithmen, welche zur Berechnung der Hypothesen jeweils die gesamten binär gelabelten Trainingsdaten heranziehen. Bezogen auf dieses Modell können wir annehmen, dass der Lernalgorithmus stets terminiert und die Verteilung der Trainingsdaten die grundsätzliche Lernbarkeit nicht beeinflusst. Dies bleibt bestehen, wenn wir zusätzliche Anforderungen an einen erfolgreichen Lernprozess stellen, die bei einer zeitlich verzögerten Ausgabe von Hypothesen weiterhin zutreffen. Weiterhin untersuchen wir nicht verzögerbare konsistente Lernprozesse. Unsere Ergebnisse bekräftigen die Behauptung, dass Verzögerbarkeit eine geeignete strukturelle Eigenschaft ist, um einen Großteil der Lernerfolgskriterien zu beschreiben und gesammelt zu untersuchen. Unser erstes Theorem klärt für dieses Modell die paarweisen Implikationen oder Unvergleichbarkeiten innerhalb einer etablierten Auswahl verzögerbarer Lernerfolgskriterien auf. Insbesondere können wir annehmen, dass der inkrementelle Lernalgorithmus seine Hypothese nur dann verändert, wenn die aktuellen Trainingsdaten der letzten Hypothese widersprechen. Ein solches Lernverhalten wird als konservativ bezeichnet. Ausgehend von Resultaten über Funktionenlernen erhalten wir eine strikte Hierarchie von approximativen Lernerfolgskriterien. Hierbei wird eine aufsteigende endliche Zahl von Anomalien (Fehlern) des durch den Lernalgorithmus vorgeschlagenen Konzepts im Vergleich zum Lernziel erlaubt. Weiterhin ergibt sich eine Dualität abhängig davon, ob das Oszillieren zwischen korrekten Hypothesen als erfolgreiches Lernen angesehen wird. Dies steht im Gegensatz zur oszillierenden Hierarchie, wenn der Lernalgorithmus von ausschließlich positiven Daten lernt. Auch betrachten wir einen Hypothesenraum, der einen Kompromiss zwischen den beiden am häufigsten in der naheliegenden Literatur vertretenen Arten von Hypothesenräumen darstellt. Im zweiten Teil modellieren wir effizientere Lernalgorithmen. Diese aktualisieren ihre Hypothese ausgehend vom aktuellen Datum, jedoch ohne Zugriff auf die zurückliegenden Trainingsdaten. Wir konzentrieren uns auf iterative (hypothesenbasierte) und BMS (zustandsbasierte) Lernalgorithmen. Iterative Lernalgorithmen nutzen ihre letzte Hypothese und das aktuelle Datum, um die neue Hypothese zu berechnen. Die bisherige Forschung klärt beispielsweise die oben erwähnten paarweisen Vergleiche zwischen den verzögerbaren Lernerfolgskriterien, wenn von ausschließlich positiven Trainingsdaten gelernt wird. Wir vergleichen verzögerbare Lernerfolgskriterien bezogen auf iterative Lernalgorithmen, sowie das Lernen von aussschließlich positiver oder binär gelabelten Daten. Bereits bekannt war die Existenz von Konzeptklassen, die von einem iterativen Lernalgorithmus gelernt werden können, jedoch nicht auf eine konservative Weise. U-shapedness ist ein in den Kognitionswissenschaften beobachtetes Phänomen, demzufolge der Lerner im Lernprozess von einer bereits korrekten Hypothese divergiert. Wir zeigen, dass iterative Lernalgorithmen auch durch das Verbieten von U-Shapes eingeschränkt werden. Zur Berechnung der nächsten Hypothese nutzen BMS-Lernalgorithmen ergänzend zum aktuellen Datum den aktuellen Zustand des Lernalgorithmus. Für Lernalgorithmen, die über unendlich viele mögliche Zustände verfügen, leiten wir alle paarweisen Implikationen oder Unvergleichbarkeiten innerhalb der etablierten Auswahl verzögerbarer Lernerfolgskriterien her. Ein Lernerfolgskriterium ist semantisch, wenn es weiterhin gilt, falls im Lernprozess andere Parameter ausgegeben werden, die jeweils für die gleichen Klassifikatoren stehen. Syntaktische (nicht-semantische) Lernerfolgskriterien, beispielsweise Konservativität und syntaktische Non-U-Shapedness, schränken BMS-Lernalgorithmen ein. Um die Äquivalenz der syntaktischen Lernerfolgskriterien zu zeigen, betrachten wir witness-based Lernprozesse. In diesen wird jeder Hypothesenwechsel durch einen später korrekt klassifizierten Zeugen in den Trainingsdaten gerechtfertig. Weiterhin sind iterative und BMS-Lernalgorithmen für die semantischen verzögerbaren Lernerfolgskriterien jeweils äquivalent. Ist syntaktische Non-U-Shapedness Teil des Lernerfolgskriteriums, sind BMS-Lernalgorithmen mächtiger als iterative Lernalgorithmen. Die Beweise sind kombinatorisch, angelehnt an Untersuchungen zu formalen Sprachen oder nutzen Resultate aus dem Gebiet der Berechenbarkeitstheorie, beispielsweise unendliche Rekursionstheoreme (Fixpunktsätze). (Orig.).
Erfasst vonDeutsche Nationalbibliothek, Frankfurt am Main
Update2022/3
Literaturbeschaffung und Bestandsnachweise in Bibliotheken prüfen
 

Standortunabhängige Dienste
Da keine ISBN zur Verfügung steht, konnte leider kein (weiterer) URL generiert werden.
Bitte rufen Sie die Eingabemaske des Karlsruher Virtuellen Katalogs (KVK) auf
Dort haben Sie die Möglichkeit, in zahlreichen Bibliothekskatalogen selbst zu recherchieren.
Tipps zum Auffinden elektronischer Volltexte im Video-Tutorial

Trefferlisten Einstellungen

Permalink als QR-Code

Permalink als QR-Code

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)

Teile diese Seite: